
Now let's look at an application of dynamic programming to a problem we have seen before –

one of the most popular (and useful) optimization problems in the world:

0/1 Knapsack

Recall the problem definition.  We have  objects , each with known mass  

and known value , and a container of capacity  .  Our goal is to find a maximum-value 

subset of the objects that will fit in the container.

I'm going to present the dynamic programming solution very briefly - you should be able to 

fill in any gaps and complete the steps outlined above.

To identify subproblems that will be useful (and simultaneously see how to parameterize the 

problem) we can ask ourselves “what aspects of the problem definition can be reduced?”  The

most obvious answer is “k can be reduced” - and that is a good thought.  Maybe there is some

way to find the optimal solution for a container of size k by solving subproblems on a 

solutions of size < k.  Let’s hold on to the idea of using “container size” as one of the 

parameters.  

Another aspect of the solution that can be reduced is the number of objects in the set.  And 

here we encounter for the first time one of the most useful and powerful techniques for 

creating dynamic programming algorithms.  For each object in the set there are really only 

two options: we either put it in the container or we don’t.  We can use these two options to 

build a recurrence relation in a very simple way.

Consider the last object in the set:  .   If we put it in the container we get its value , but 

the available capacity in which we can place other items is reduced by .  It we don’t put it 

in the container we don’t get its value but the available capacity is undiminished.

Let  be the maximum value we can get when the objects available to us are

   and the capacity is .



Using this notation,

 ,    # use   

              # don’t use it

             )

and in fact we can use the same reasoning for   .  We either include it or we don’t, so if 

the objects available are   and the available capacity is   , then

,

                        

        )

This generalizes!  If the objects available are  then

,

                         

          )

which works for all  .     is the maximum value subset of   that will 

fit in  a container of capacity .  Clearly if   then the value is , otherwise it is 0

Those look like base cases, and they are … but we need one more generic base case to handle 

situations where   and we need one to handle the situation where 

      when    

      when 

Now we have our recurrence relation complete, and it needed 2 parameters to cover all the 

situations.



Thus we can represent all the subproblem values using a 2-dimensional table.  On one axis we

will have all the objects, and on the other axis we place all the integers from 1 up to k.  We can

fill in the top row using our base cases for i=1.  Then we can fill in each subsequent row.  As 

explained above, each value depends on either 1 or 2 values from the row immediately above 

it.  When completed, the bottom right hand element of the table gives the value of the optimal

solution. 

The key to understanding this application of dynamic programming is to see that if we know

  for some  and for all , then we can compute  for all    

Furthermore, each of those computations takes constant time.

An example may help.   Suppose we have  6 objects with these masses and values:

object 1 2 3 4 5 6

mass 7 4 6 4 3 5

value 100 70 40 80 25 80

And suppose k = 10

Our MaxVal table looks like this:

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6



We can fill in the first row using our base cases

1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 100 100 100 100

2

3

4

5

6

And then the second row using values found in the first row.

1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 100 100 100 100

2 0 0 0 70 70 70 100 100 100 100

3

4

5

6

MaxVal(2,4) is the first point at which our recurrence relation becomes interesting.  Recall

 and 

MaxVal(2,4) = max(70+MaxVal(1,0), MaxVal(1,4)) = max(70,0) = 70

When we get to MaxVal(2,7) we get

MaxVal(2,7) = max(70+MaxVal(1,3), MaxVal(1,7) = max(70,100) = 100



Continuing, the table looks like this:

1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 100 100 100 100

2 0 0 0 70 70 70 100 100 100 100

3 0 0 0 70 70 70 100 100 100 110

4 0 0 0 80 80 80 100 150 150 150

5 0 0 25 80 80 80 105 150 150 150

6 0 0 25 80 80 80 105 150 150 160

We see that the maximum possible value is 160.  But how do we figure out which elements to 

choose?

We reconstruct the calculations that led to the 160:   

MaxVal(6,10) = max(80+MaxVal(5,10-5), MaxVal(5,10))

                                    = max(80+80,150)

which reveals that we achieved 160 by adding the 80 value of  to the solution in the  row 

with capacity = 10-5 = 5  .   Thus our optimal solution includes object 

Where did the 80 in MaxVal(5,5) come from?   We see that it came from the element directly 

above it (you should work out why this is true) which corresponds to the “do not include 

object ” decision.  This element is MaxVal(4,5)

Using the same logic we discover that our optimal solution contains    but none of the 

objects before that.   Thus our optimal subset is 

Complexity

As we have seen, the MaxVal table has dimension n*k, and each element is computed in 

constant time.  The “trace back” stage of the algorithm examines at most two elements on 

each row, and runs in O(n) time.   Thus the whole algorithm runs in O(n*k + n) time, which 

simplifies to O(n*k) time.  



But wait a second!  We know that the 01-Knapsack problem is so hard that if it can be solved 

by a polynomial-time algorithm then P = NP.  What’s going on here?

It’s a subtle point.    looks like it is a polynomial time class.   But remember that  is 

part of the input – it is not fixed.    Consider an instance where  .  For this instance our 

dynamic programming approach would be in     which is certainly not 

polynomial.

Thus our algorithm cannot guarantee fixed-degree polynomial running time for all instances 

of the problem, so it does not prove P = NP.   Good thing!


